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Abstract. We study the one- and two-dimensional extended Hubbard model by means of the Compos-
ite Operator Method within the 2-pole approximation. The fermionic propagator is computed fully self-
consistently as a function of temperature, filling and Coulomb interactions. The behaviors of the chemical
potential (global indicator) and of the double occupancy and nearest-neighbor density-density correlator
(local indicators) are analyzed in detail as primary sources of information regarding the instability of
the paramagnetic (metal and insulator) phase towards charge ordering driven by the intersite Coulomb
interaction. Very rich phase diagrams (multiple first and second order phase transitions, critical points,
reentrant behavior) have been found and discussed with respect to both metal-insulator and charge or-
dering transitions: the connections with the experimental findings relative to some manganese compounds
are analyzed. Moreover, the possibility of improving the capability of describing cuprates with respect to
the simple Hubbard model is discussed through the analysis of the Fermi surface and density of states
features. We also report about the specific heat behavior in presence of the intersite interaction and the
appearance of crossing points.

PACS. 71.10.-w Theories and models of many-electron systems – 71.10.Fd Lattice fermion models
(Hubbard model, etc.) – 71.27.+a Strongly correlated electron systems; heavy fermions

1 Introduction

Many authors have emphasized the importance of consid-
ering non-local Coulomb interactions in describing doped
systems like cuprate superconductors or fullerides [1–5].
The simplest Hamiltonian satisfying these requirements is
the extended Hubbard model, where a nearest-neighbor
Coulomb interaction term is added to the original Hub-
bard Hamiltonian [6]. The inclusion of non-local Coulomb
interactions substantially modifies the electronic proper-
ties of the model. For instance, the charge transfer exci-
tons, which can only be detected by optical spectroscopy
at half filling, attain some charge in doped systems and
become visible in direct and inverse photoelectron spec-
troscopies [7]. Other studies, using an effective extended
Hubbard model, support the appearance, upon doping,
of states evenly distributed inside the gap [8]. This sug-
gests that the general features of the cuprates can be well
described by using this effective Hubbard Hamiltonian,
which has also been used to mimic some of their experi-

a e-mail: avella@sa.infn.it
b e-mail: mancini@sa.infn.it

mental features in the superconducting state by means of
a BCS treatment [9].

The Hubbard model with intersite Coulomb inter-
action is also one of the simplest models capable to
describe charge ordering (CO) in interacting electron
systems. Already in 1938 Wigner proposed [10] that a
low density interacting electron gas crystallizes in a lat-
tice in order to minimize the Coulomb repulsion. At
higher densities crystallization is possible if the kinetic
energy is reduced by spin or phonon interactions [11].
Charge ordering has been experimentally observed in a
variety of systems: GaAs/AlGaAs heterostructures [12],
rare-earth pnictides like Yb4As3 [13], colossal magnetore-
sistance compounds [14], unconventional spin-Peierls ma-
terials α−NaV2O5 [15], cuprates [16], manganites [17],
magnetite [18], vanadium oxides [19], Bechgaard salts [20].

Among the many analytical methods used to study the
extended Hubbard model we recall: Hartree-Fock approx-
imation [21], perturbation theory [22], dynamical mean
field theory [23], slave boson approach [24,25], coherent
potential approximation [26]. Numerical studies by means
of Quantum Monte Carlo [27], Lanczos technique [28] and
exact diagonalization [29] have also to be recalled.
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In this manuscript, we analyze the extended Hubbard
model by means of the Composite Operator Method
(COM) within the 2-pole approximation (see Refs. [30,31]
and references therein).

The COM is based on two main concepts: (i) the exci-
tations present in interacting systems are far from being
the original electrons and need to be described by asymp-
totic fields in the form of composite operators; (ii) the use
of composite operators requires the enforcement of the
non-canonical algebra they obey in order to properly fix
the representation where their propagators are realized.
This latter task is effectively undertaken by computing
the values of the unknown correlators appearing in the
calculations by means of Algebra Constraints [30].

The detailed analysis of the instabilities of the homoge-
neous paramagnetic phase of the extended Hubbard model
towards charge ordered inhomogeneous phases is the main
task undertaken with this manuscript. With respect to
this, we have analyzed the rank of the transitions and
their relations with the metal-insulator one. Actually, this
study is the only relevant at room temperatures and/or
in presence of frustration as any spin ordered phase (e.g.,
the antiferromagnetic phase) would be inaccessible in such
situations. It is worth noticing that the very rich phase di-
agrams (multiple first and second order phase transitions,
critical points, reentrant behavior) that have been found
can be put in connection with the experimental findings
relative to some manganese compounds [32–34]. We have
also discussed in detail the possibility of improving the ca-
pability of describing cuprates with respect to the simple
Hubbard model and the appearance of crossing points in
the specific heat in presence of the intersite interaction.

In the next section we present the model, the basis
and the solution according to the COM. In the subse-
quent sections, we comment our results for the chemi-
cal potential, the phase diagram, the double occupancy,
the nearest-neighbor density-density correlator, the inter-
nal and kinetic energies, the Fermi surface, the density of
states and the specific heat. The types of charge ordered
phases found according to the sign of the intersite poten-
tial are described, the rank of the transitions is evidenced
through the analysis of the discontinuities in the chemi-
cal potential, double occupancy, nearest-neighbor density-
density correlator and kinetic and internal energies, quite
complex phase diagram (with metal to insulator and to
charge ordered phase transitions and reentrant behavior)
are drawn and commented, the behavior of single- (dou-
ble occupancy) and two- (nearest-neighbor charge) site
correlators is studied in order to get information about
the actual charge distribution, the value of the filling at
which the nesting appear is determined as a function of
intersite potential, the specific heat behavior is studied in
comparison to that of the simple Hubbard model.

2 Hamiltonian, field equations and solution

We will study a generalized version of the Hubbard
model [6] which includes the intersite Coulomb interac-
tion [35–41]. Accordingly, the Hamiltonian under analysis

reads as

H =
∑

i

[−µc†(i)c(i) − 2dtc†(i)cα(i)]

+
∑

i

[Un↑(i)n↓(i) + dV n(i)nα(i)] (2.1)

where µ is the chemical potential, c†(i) = (c†↑(i) c
†
↓(i)) is

the creation electronic operator in spinorial notation, i =
(i, t), i is one lattice vector of the d-dimensional square
lattice, t, as usually done in the related literature, is both
the time variable and the hopping integral, the context
will clarify the use, U is the onsite Coulomb interaction,
V is the intersite interaction, n(i) = n↑(i) + n↓(i), nσ(i)
is the number operator for electrons of spin σ. Hereafter,
t will be used as reference unit for all energies. We have
used the notation

φα(i, t) =
∑

j

αijφ(j, t) (2.2)

where φ can be any operator and αij is the projector
on the first 2d neighbor sites on the lattice. We have
α(k) = F [αij] = 1/d

∑d
n=1 cos(kn), where F is the Fourier

transform.
Within the Composite Operator Method [30], once we

choose a n-component spinorial basis ψ(i), the equations
of motion of this latter take the general form

i
∂

∂t
ψ(i, t) =

∑

j

ε(i, j)ψ(j, t) + δj(i, t) (2.3)

where ε(k) = F [ε(i, j)] is the n × n energy matrix
describing the projected dynamics. The energy ma-
trix can be computed as ε(k) = m(k)I−1(k) where
I(k) = F〈{ψ(i, t), ψ†(j, t)}〉 is the normalization matrix
of the basis and m(k) = F〈{i ∂

∂tψ(i, t), ψ†(j, t)}〉. If we
neglect δj(i) we obtain a pole structure for the retarded
thermal Green’s function G(k, ω) = F〈R[ψ(i)ψ†(j)]〉 (R
is the retarded operator) that will obey the following
equation of motion

ωG(k, ω) = I(k) + ε(k)G(k, ω) (2.4)

The solution of equation (2.4) is

G(ω,k) =
n∑

i=1

σ(i)(k)
ω − Ei(k) + iδ

. (2.5)

where Ei(k) are the eigenvalues of ε(k) and the spectral
weights σ(i)(k) can be computed as

σ
(i)
ab (k) =

n∑

c=1

Ωai(k)Ω−1
ic (k)Icb(k) a, b = 1, . . . , n (2.6)

where the matrix Ω(k) has the eigenvectors of ε(k) as
columns [30]. In this manuscript, we will use a 2-pole ap-
proximation within the COM. The reader interested to
more elaborated self-energy treatments (in order to take
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into account δj(i) we should compute the higher order
propagator 〈R[δj(i)δj†(j)]〉) should refer, for instance, to
references [42–44].

For the model under analysis in this manuscript, we
choose, as basic fields, the Hubbard operators, which faith-
fully describe the Hubbard subbands as eigenoperators of
the ionic model,

ψ(i) =

(
ξ(i)

η(i)

)
(2.7)

where ξ(i) = n(i)c(i) and η(i) = c(i)−ξ(i) = [1−n(i)]c(i).
They satisfy the following equations of motion

i
∂

∂t
ψ(i) =

(−µξ(i) − 2d[tcα(i) + tπ(i) − V ξ(i)nα(i)]

−(µ− U)η(i) + 2d[tπ(i) + V η(i)nα(i)]

)
(2.8)

where

π(i) =
1
2
σµnµ(i)cα(i) + c(i)cα

†
(i)c(i) (2.9)

σµ = (−1,σ), nµ(i) = (n(i),n(i)) is the charge and spin
number operator, n(i) = c†(i)σc(i) and σ are the Pauli
matrices.

After the choice we made for the basis, we can com-
pute, in the 2-pole approximation within COM, the en-
ergy spectra Ei(k) and the spectral density functions
σ(i)(k) according to the general procedure given above.
The lengthy expressions can be found in Appendix A. It
is worth noting that some parameters, not connected to
the Green’s function under analysis, appear in the ex-
pressions: χα

c = 〈n(i)nα(i)〉 and p = 1
4 〈nα

µ(i)nµ(i)〉 −
〈[c↑(i)c↓(i)]αc†↓(i)c†↑(i)〉. The first one, χα

c , will be com-
puted by calculating the density-density correlation func-
tion 〈n(i)n(j)〉 within the one-loop approximation [45]
(see second equation in Eqs. (A.10)). The second will be
fixed by the local algebra constraint [30] 〈ξ(i)η†(i)〉 = 0.
Such a procedure is very peculiar to the COM treat-
ment [30] as discussed in the introduction. By solving the
set of coupled self-consistent equations (A.9–A.10), we can
calculate the various correlation functions and the physi-
cal properties of the system. Results will be presented in
the following sections for the one-dimensional (1D) and
the two-dimensional (2D) systems.

Before moving to the results, it is worth noting that the
set of self-consistent equations (A.9–A.10) is highly non-
linear. According to this, it is natural to expect a certain
number of coexisting solutions with quite different fea-
tures. Actually, the set admits only two distinct solutions
that, hereafter, we will call COM1 and COM2, according
to the main sign of parameter p. In particular, as a func-
tion of the filling, we have a p positive and of the order
of the filling in COM1 and a p negative or very small and
positive in COM2. As the Composite Operator Method
tries to give answers in the whole space of model and
physical parameters and as the Hubbard model response

is profoundly different according to the region of the lat-
ter space, the presence of two solutions, so different in
their features, should be seen as a richness of the method.
Due to the difficulties inherent to the task of studying
the whole phase diagram, many other approximations fo-
cus just on one region and usually give wrong results in
the rest of the parameter space. COM, also thanks to the
opportunity of choosing between the two solutions accord-
ing to the features one expects to describe, has proved to
be capable to explore the whole phase diagram, to get
significatively good results for all dimensions and values
of the tuning parameters, to give relevant interpretations
of the experimental facts and to constitute a solid basis
for further investigations. It is also worth remembering
that, at the end of the day, our analysis has, as main goal,
the description of features, more or less anomalous, of real
physical systems by means of Hamiltonian models. We can
never be sure that our Hamiltonian contains all, and only,
relevant ingredients. Different experimental situations can
be described by different analytical (and/or numerical)
solutions of the same Hamiltonian. For a fixed set of pa-
rameters (filling, temperature, pressure, ...), the different
solutions will have different free energies and one can sim-
ply think to choose one or the other according to this. This
is the correct procedure if we wish to answer the question:
“Which is the phase effectively described by this Hamilto-
nian under such external conditions?”. On the other hand,
a solution different from the one with lower free energy
can better describe the real experimental situation. This
latter, although mainly determined by the ingredients al-
ready present in the Hamiltonian (the possibility to find
a solution with similar characteristics assures this), is the
one effectively realized in nature owing to some marginal
interactions not present in the Hamiltonian chosen. If we
would include such interactions in the Hamiltonian and
compute new solutions, we will find that the lower free
energy one will be the one capable to describe the actual
physical situation. Now, the most important consideration
to be done is that this latter solution will be essential iden-
tical to that obtained with the previous Hamiltonian and
that was already capable to describe the actual physical
situation although it has not the lower free energy. Ac-
cording to this, in the comparison with the experiments
no solution can be discarded a priori (neither on the basis
of the free energy determination) and, with this idea in
mind, we have here, and in many other works, presented
the results for the two solutions we have obtained.

For the one-dimensional system we will consider only
COM2 solution as our past experience suggests that this
is the one best suited to describe the physics of the sim-
ple one-dimensional Hubbard model for which we got
excellent agreements with the Bethe Ansatz exact solu-
tion [46–49]. For the two-dimensional case, we will study
both solutions as they will permit us to analyze, in par-
ticular in proximity of half filling and as regards the
metal-insulator transition and its relation to the charge
ordering transition, two different behaviors that could
be both observed experimentally. Also in this case the
many positive comparisons with numerical results, that
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we have obtained in the previous studies on the simple
two-dimensional Hubbard model [45,50–54], will be used
as a guide throughout all the analysis.

3 The chemical potential

The chemical potential can be determined as a function
of the parameters n, T , U , V by solving the system of
self-consistent equations (A.9–A.10). It is worth noticing
that our results show that the relation

µ(2 − n) = U + 4dV − µ(n) (3.1)

required by the particle-hole symmetry, is exactly satis-
fied. In particular at half filling we have µ(1) = 1

2U+2dV .
This is due to the fact that, among the possible represen-
tations, the Algebra Constraint coming from the Pauli
principle [see first equation in Eqs. (A.10)] selects the
one which preserves the particle-hole symmetry of the
model [30]. Any other choice for the equation fixing the
parameter p leads to a violation of the symmetry.

3.1 One-dimensional system

The chemical potential as a function of the particle density
is reported in Figure 1 (top) for U = 2 and V = 0 and 1.
For any value of the filling the chemical potential increases
by increasing the intersite Coulomb interaction and the in-
crement is an increasing function of the filling: within the
paramagnetic phase the average probability for two parti-
cles to be nearest neighbors increases with the filling and
accordingly increases the free energy in the presence of a
repulsive intersite Coulomb interaction, then, the behavior
of the chemical potential follows.

For negative (i.e., attractive) values of the intersite
Coulomb potential, we can see that the paramagnetic so-
lution is unstable towards a phase with charge separation
(i.e., with charge ordering). As a matter of fact, an attrac-
tive potential between charges at nearest neighbor sites
favors a rearrangement of the particles in a one-particle-
per-site scheme in order to maximize the gain in energy. At
fillings less than one this scheme can lower the energy more
and more by accepting more particle in the system and in-
creasing the number of occupied couples of nearest neigh-
bor sites. According to this, the chemical potential shows
a negative slope which, on increasing the value of the in-
tersite potential, manifests at lower and lower values of the
filling. The critical value of the intersite Coulomb potential
which controls the transition to the charge ordered state
depends on the intensity of the local Coulomb interaction.
In order to illustrate the case, in Figure 1 (bottom), the
chemical potential is given versus intersite Coulomb po-
tential for U = 2 and various values of the particle density:
all curves cross at a certain value V ≈ −0.5, below which
the system exhibits a negative compressibility.

As expected from the exact Bethe Ansatz solution of
the one-dimensional simple Hubbard model, for any U > 0
there is a discontinuity at half filling, signaling a gap in
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Fig. 1. The chemical potential at U = 2 as a function of:
(top) the particle density for V = 0, 1; (bottom) the intersite
Coulomb interaction for several values of n.

the density of states and the occurrence of an insulating
phase. As it can be seen from Figure 1 (top), the effect
of the intersite term V is to reduce the size of the gap.
This is studied in Figure 2 where the discontinuity of the
chemical potential at half filling

∆µ = µ+(1) − µ−(1) (3.2)

is plotted versus the intersite Coulomb potential for var-
ious values of the onsite Coulomb potential at half fill-
ing and T = 0.01. We see that for a given value of the
onsite Coulomb potential, there is a critical value Vc.
For values of intersite Coulomb potential greater than
Vc, the paramagnetic insulating phase becomes unstable
(the chemical potential gets a negative slope) and there
is a phase transition to a charge ordered insulating state
(CO) [27]. This kind of ordering is much different than
that discussed previously (i.e., the one-particle-per-site
type); in this case the repulsion among particles favors a
checkerboard pattern with half sites double occupied (see
in the next sections the discussion about the double occu-
pancy) and half empty, these latter ones being the nearest
neighbors of the former ones. By analyzing the derivative
[∂(∆µ)/∂V ]V =Vc , we can show that at zero temperature
the transition is second order for U ≤ 2 and first order for
higher values of the onsite Coulomb potential.
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Fig. 2. The discontinuity of the chemical potential at half
filling and T = 0.01 is plotted versus the intersite Coulomb
interaction for U = 2, 3 and 4.
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Fig. 3. The discontinuity of the chemical potential at half
filling is plotted versus the intersite Coulomb interaction for
various values of U and T = 0.01.

3.2 Two-dimensional system

As already noted for the 1D system, also in 2D within
COM2 solution the discontinuity ∆µ of the chemical po-
tential at half filling decreases by increasing the value of
the intersite Coulomb potential and the system exhibits a
phase transition to a charge ordered phase at some criti-
cal value Vc. The values of Vc, as a function of the onsite
Coulomb potential, are shown in Figure 3 where ∆µ is re-
ported versus the intersite Coulomb potential for various
values of the onsite interaction U .

Within COM1 solution, the behavior of the chemical
potential as a function of the particle density is shown in
Figure 4 (top) for U = 4 and various values of the inter-
site Coulomb potential. We see that for attractive values
of the intersite Coulomb interaction the chemical potential
decreases by increasing the filling, showing an instability
of the paramagnetic case towards phase separation. In par-
ticular, exactly at quarter filling (n = 0.5), we can have
a charge-ordered state of one-particle-per-site type. Away
from quarter filling, the phase separation is between two
phases with different particle densities (these latter should
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Fig. 4. The chemical potential at T = 0.01 and U = 4 versus:
(top) the particle density for several values of V ; (bottom) the
intersite interaction for several values of n.

be determined through a Maxwell construction), whose
nature could be investigated (they can be both charge-
disordered or one ordered and another disordered) within
a treatment where translational invariance should be re-
laxed. The instability of the paramagnetic phase can be
here studied by plotting the chemical potential as a func-
tion of the intersite Coulomb potential. This is shown in
Figure 4 (bottom) where we see that the curves for dif-
ferent values of filling all cross at some critical value V ∗,
depending on the onsite Coulomb potential [V ∗ ≈ −1.1
for U = 4]. For |V | < |V ∗| the chemical potential is a
decreasing function of the filling.

As in the simple Hubbard model [45,50–54], COM1
solution describes a metallic phase in the low regime of
on-site Coulomb repulsion and a transition to the insulat-
ing state when the potential reaches some critical value.
This feature survives also when the intersite Coulomb in-
teraction is taken into account. For a fixed value of this
latter, there is a critical value of the on-site repulsion such
that the chemical potential exhibits a discontinuity at half
filling. This latter signals the opening of a gap in the den-
sity of states and therefore a Mott transition. This feature
is illustrated in Figure 5. Now, the current study shows
that the critical value Uc decreases by increasing the inter-
site potential V . By further increasing the intersite poten-
tial, the system undergoes a second transition to a charge
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ordered state of checkerboard type. This transition is char-
acterized by a discontinuity in the double occupancy as
commented above and shown in the next sections.

4 Phase diagrams

4.1 One-dimensional system

As reported in the previous section, COM2 solution for
the one dimensional system shows that there is phase
transition from the Mott insulating phase to a inhomoge-
neous charge ordered state of checkerboard type for posi-
tive values of the intersite Coulomb potential greater than
some Vc. This result is consistent with many other stud-
ies [22,27,55–60]. The nature of this phase transition is
not well understood yet and currently under intense in-
vestigation [57–61]. The phase diagram in the plane V -U
is shown in Figure 6, where the critical value Vc of the
intersite Coulomb potential is plotted as a function of the
onsite potential U . The arrow indicates the point where
the phase transition from second order changes to first
order.

It is necessary noticing that this transition is quite
different from that usually observed in proximity of the
U = 2V line between an inhomogeneous charge ordered
phase and an homogeneous spin ordered phase. In this
manuscript, we decided to focus on the homogeneous para-
magnetic phase, its instabilities towards charge ordered
inhomogeneous phases (paying attention to the rank of
the transition) and the relation between these latter and
the metal-insulator transition. These kinds of transitions
are the only ones relevant at room temperatures and/or
in presence of frustration as the antiferromagnetic phase
is quite depressed in such cases.

In Figure 7 we give the phase diagram in the plane
T -V for U = 2 and U = 8. For U = 2 the transition is
second order for all values of T . For U = 8 the transition
is first order for T ≤ 0.55 and second order for T ≥ 0.6.
The arrow indicates the temperature where, by increas-
ing T , the transition becomes continuous. It is interesting
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Fig. 6. The critical value Vc where there is a phase transition
from the Mott insulator to charge ordered state is plotted as
a function of the onsite Coulomb potential at half filling and
zero temperature.

to observe that the transition is continuous if there is no
reentrant temperature behavior. By this latter we mean a
situation in which by increasing temperature we can first
enter and then exit a phase when within another (e.g.,
see Fig. 7 (bottom) at V = 10.1 for increasing temper-
ature from zero). When there is a reentrant temperature
behavior, the transition is discontinuous up to the turning
point, then becomes continuous. A reentrant temperature
behavior has been experimentally observed [32–34] and
will be further discussed for the 2D system. It is worth
noting that the transition is also marked by a disconti-
nuity in the nearest-neighbor density-density correlation
function χα

c = 〈nα(i)n(i)〉. This quantity is shown in Fig-
ure 8 as a function of V/Vc at half filling, T = 0.01 and
U = 2, 8 and 20. At the transition χα

c is continuous for
U = 2 and discontinuous for U > 2. The nearest-neighbor
density-density correlation function is a decreasing func-
tion of the intersite potential as the repulsion diminishes
the probability of finding neighboring sites occupied. In
particular, at the transition this probability reduces with
a change of concavity (second order transition) or with a
discontinuity (first order transition).

4.2 Two-dimensional system: COM2

The COM2 solution for the two-dimensional case has sim-
ilar characteristic to the 1D case. The phase diagrams in
the planes V -U and T -V are shown in Figures 9 (top)
and 9 (bottom), respectively.

At zero temperature the transition is continuous for
U ≤ 1.8 and first order for U > 1.9. For finite temper-
ature and U = 8 a reentrant behavior as function of
temperature is observed. The transition is first order up
to the turning point T = 0.6, then becomes continuous.
For U ≤ 1.8 no re-entrant behavior is observed. The
fact that charge ordering may disappear by decreasing
temperature has been experimentally observed in Pr
0.65(Ca0.7Sr0.3)0.35MnO3 [32] and La2−2xSr1+2xMn2O7

(0.47 ≤ x ≤ 0.62) [33,34]. On the theoretical side a
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re-entrant temperature has been obtained in the context of
the extended Hubbard model at quarter filling [23,26,28].

In Figure 10 (top) the nearest-neighbor density-density
correlation function χα

c = 〈nα(i)n(i)〉 is plotted as a func-
tion of V/Vc at half filling, U = 8 and various tempera-
tures. At the transition χα

c is discontinuous for T = 0.01
and T = 0.4, and continuous for T = 1, in agreement with
the phase diagram shown in Figure 9 (bottom).
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Fig. 9. (top) The critical value Vc for the Mott insulator to
charge ordered state phase transition is plotted for the two-
dimensional case (COM2 solution) as a function of: (top) the
onsite Coulomb potential at half filling and zero temperature
(COM2 solution); (bottom) V at half filling and U = 8.

4.3 Two-dimensional system: COM1

The results given for the chemical potential show that
for low values of the on-site Coulomb interaction the sys-
tem is in a metallic state and undergoes a metal-insulator
transition for a critical value Uc, which depends on the
intensity of the intersite potential. In order to study this
metal-insulator transition (MIT) we consider the quantity

∆E = E1(0, 0)− E2(π, π) (4.1)

which measures the distance between the bottom of the
upper subbands and the top of the lower one. After equa-
tion (A.3), at half filling we have

R(k) = R1α(k) R1 = −8tp+ 4V (Cα
22 + Cα

11)
g(k) = g0 g0 = −U + 8V (1 − χα

c )

m12(k) = m1α(k) m1 = −4
[
t(

1
2
− p) − V Cα

12

]
. (4.2)

Therefore, we simply have

∆E = 2R1 +
√
g2
0 + 16m2

1. (4.3)

For a fixed value of the onsite Coulomb repulsion,
the equation ∆E = 0 will determine the critical value
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Fig. 10. (top) The nearest-neighbor density-density correla-
tion function χα

c is plotted as a function of V/Vc at half filling,
U = 8 and T = 0.01, 0.4 and T = 1, for the two-dimensional
case (COM2 solution). (bottom) The energy gap ∆E at half
filling is reported as a function of U for several values of U for
T = 0, for the two-dimensional case (COM1 solution).

Vc where a metal-insulator transition occurs. The re-
sults show that the metallic region is compressed by the
presence of the intersite interaction and disappears for
V > 5.7. This is shown in Figure 10 (bottom), where
∆E is reported versus the onsite Coulomb potential for
various values of the intersite Coulomb potential at zero
temperature.

For V > 5.7 the equation ∆E = 0 does not have a
solution and the metallic phase disappears. By further in-
creasing the intersite Coulomb potential, there is an in-
stability in the self-consistent equations (A.9–A.10), the
double occupancy exhibits a discontinuity leading the sys-
tem to a charge ordered state. The complete phase dia-
gram in the plane V -U is shown in Figure 11. The dia-
gram is characterized by two critical curves, Vc1 and Vc2,
which separate the different phases. Vc1 controls the MIT
and Vc2 controls the transition to a charge ordered state.
At Vc1 the transition is first order for U ≤ 12 and sec-
ond order for U ≥ 12.2; at Vc2 we have first order for
U ≥ 1.9 and second order for U ≤ 1.8. As proposed in ref-
erence [62], the insulating state can be characterized by
the order parameters 〈ξσ(j)ξ†σ(jodd)〉 and 〈ησ(j)η†σ(jodd)〉
which vanish at the MIT (jodd is any site reachable in an
odd number of hops from site j). The nearest neighbor
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Fig. 11. The complete phase diagram in the plane U -V
is shown at half filling for zero temperature, for the two-
dimensional case (COM1 solution).

hopping amplitudes A = 〈ξα(i)ξ†(i)〉 = 〈ηα(i)η†(i)〉 and
B = 〈ηα(i)ξ†(i)〉 = 〈ξα(i)η†(i)〉 are reported in Figure 12
as functions of the onsite Coulomb potential for various
values of the intersite Coulomb potential. We see that for a
given value of the intersite Coulomb potential, the proba-
bility amplitude A suddenly vanishes at some critical value
of Uc and remains zero for all values of U > Uc. The prob-
ability amplitude B does not vanish above Uc. Owing to
this contribution, we have that for U > Uc the hopping
of electrons from site j to a nearest neighbor is not for-
bidden, although restricted by the fact that A = 0. This
is consistent with the fact that the double occupancy re-
mains finite for U > Uc and vanishes only in the limit
U → ∞ [62].

The phase diagram in the plane T -V is shown in Fig-
ures 13 (top) and 13 (bottom). For U = 15 (see Fig. 13
(top)) there is no metallic phase and we have a criti-
cal temperature Tc(V ) where a transition from insulat-
ing to charge ordered state is observed. The transition is
first order up to Tc = 0.95, then becomes continuous. A
re-entrant temperature is observed with the same char-
acteristics previously discussed. For U = 8 (see Fig. 13
(bottom)) we have two critical temperatures, Tc1 and Tc2,
which characterize the MIT transition and the insulator-
charge order transition, respectively. Also in this case a
re-entrant temperature is observed in the latter transition.

5 Double occupancy, kinetic and internal
energies

In contrast to the local interaction U , a positive in-
tersite interaction V favors the double occupancy D =
1
N

∑
i〈n↑(i)n↓(i)〉 = n

2 − C22. This happens through the
mechanism which favors the formation of the checkerboard
type charge ordered state as discussed above. The cost in
energy U of having a double occupied site is partly bal-
anced by the cost in energy V related to the presence of
two particles on nearest-neighbor sites. On the contrary,
an attractive intersite Coulomb interaction V leads to a
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Fig. 12. The nearest neighbor hopping amplitudes A and B
are reported as functions of the onsite Coulomb potential for
various values of V , at half filling and T = 0.

decrement of the double occupancy as the one-particle-
per-site type of charge ordering favors the presence of sin-
gle occupied sites with respect to double occupied ones.

5.1 One-dimensional system

In Figure 14 the double occupancy D is shown as a func-
tion of the particle density for U = 2 and several values of
the intersite Coulomb potential up to the critical value Vc

[for U = 2 we have Vc ≈ 2.47]. The observed features agree
with the expectation that the double occupancy increases
with the intersite potential. At half filling the double oc-
cupancy exhibits a discontinuity at the critical value Vc

[for U = 4 we have Vc ≈ 4.978] (see Fig. 15). Again, this
is a signal of a phase transition from the Mott insulator to
a CO state. It is interesting to observe that at the middle
point of the jump, the double occupancy takes the value
0.25 (the noninteracting one) for all values of U . This re-
sult can also be inferred from Figure 1 in reference [60]. It
seems as the effect of V completely neutralizes the effect
of U and the system, at least for some local quantities,
behaves as the noninteracting one.

From the Hamiltonian (2.1) we obtain the internal en-
ergy per site EH

EH =
1
N

〈H〉 = 4dt〈cα(i)c†(i)〉 + UD + dV 〈nα(i)n(i)〉.
(5.1)
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Fig. 13. The phase diagram in the plane (V -T ) is given for
U = 15 (top) and U = 8 (bottom).

0.00

0.05

0.10

0.15

0.20

0.25

0 0.2 0.4 0.6 0.8 1

1D
COM2
U=2 
T=0.01

V=-0.5
V=0
V=1
V=2
V=V

c

D

n

Fig. 14. The double occupancy versus the particle density at
T = 0.01, U = 2 and several values of V .

By increasing the intersite Coulomb potential the kinetic
energy K = 4dt〈cα(i)c†(i)〉 decreases and the internal en-
ergy EH increases, respectively, owing to the fact that the
double occupancy increases. This is shown in Figure 16.
We can clearly see that the kinetic energy, as a function
of the intersite Coulomb potential, shows a minimum at
Vc when the transition is of the second order and develops
a cusp when the transition is of the first order. The inter-
nal energy, instead, is almost insensible to the transition
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in the first case, but also develops a small cusp when the
transition becomes of the first order (not shown).

5.2 Two-dimensional system

In Figure 17, the double occupancy is plotted versus the
filling for different values of the intersite Coulomb poten-
tial. The behavior is very similar to what has been found in

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0 0.5 1 1.5 2

2D
COM1
U=4
T=0.01

V=-1.5
V=1
V=4

D

n

Fig. 17. The double occupancy versus the particle density at
T = 0.01, U = 4 and several values of V .

the 1D case. On increasing the intersite Coulomb potential
the double occupancy behaves as that of a non-interacting
system (i.e., tends to n2/4).

The double occupancy as a function of the onsite
Coulomb potential is studied in Figures 18 (top) and 18
(bottom). In Figure 18 (top) we observe, by decreasing
the onsite Coulomb potential, the transition from the in-
sulating phase to the metallic phase and to the charge or-
dered phase. In the insulating state the double occupancy
is quite depressed; at the MIT there is a discontinuity and
the double occupancy rapidly increases by decreasing the
onsite Coulomb potential until encounters a second dis-
continuity when a CO phase comes into play. The case
where V ≥ 6 is studied in Figure 18 (bottom); in accor-
dance with the phase diagram shown in Figure 7, there is
no metallic phase; by decreasing the onsite Coulomb po-
tential, the double occupancy regularly increases until the
charge ordered phase is reached.

The phase transitions are marked by a discontinuity in
the double occupancy. This is shown in Figure 19 where
(∂D/∂U)n=1 is plotted versus the onsite Coulomb poten-
tial for different values of the intersite Coulomb potential.
For V < 6 (see Fig. 19 (top)) we have two discontinu-
ities, related to the MIT and insulator to charge ordered
phase transitions. For V ≥ 6 (see Fig. 19 (bottom)) there
is no metallic state and we observe only one discontinuity,
related to the latter type of transition.

Accordingly to the behavior of the double occupancy,
for positive values of the intersite Coulomb potential, the
mobility of the electrons increases, signaling an overall
tendency towards a charge density instability driven by
the V term (see Fig. 20), in agreement with the mean-
field result [63].

6 The Fermi surface and the DOS

With respect to what we have found in the simple
Hubbard model [64], the overall shape and bending of the
Fermi surface of the system does not change on varying
the intersite Coulomb potential, but, almost rigidly, its
volume decreases on increasing the intersite Coulomb po-
tential [see Fig. 21]. This can be explained as an isotropic
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Fig. 18. The double occupancy versus the onsite potential at
T = 0.01, half filling and several values of V .

increment of the available states in k-space and can be use-
ful to describe quantitatively rather than qualitatively [64]
(as the usual Hubbard model does) the ARPES determi-
nations of the Fermi surface of the cuprate superconduc-
tors [65].

As we can see from Figures 21 (top) and 21 (bottom),
for given values of the onsite Coulomb potential and the
intersite Coulomb potential, there is a critical value of
the doping nc where the Fermi surface is nested. At this
critical value there is a crossing of the van Hove singularity
and the Fermi level in the density of states (see Fig. 22).

This feature may be related, in the framework of the
van Hove scenario, at the experimental results for the
static susceptibility [66,67] and specific heat [68–71] in
cuprate superconductors which exhibit well-definite peaks
as functions of the filling. We have studied the value of
the filling nc, the result is shown in Figure 23, where nc

is plotted as a function of the intersite Coulomb potential
for various values of the onsite Coulomb potential. As we
can see, nc increases on increasing the intersite Coulomb
potential until a certain value of U ≈ 8 is reached. Above
this critical value of the onsite Coulomb potential the in-
fluence of the intersite Coulomb potential is almost zero.
This is a clear indication that if we would like to explain
the cuprate superconductors and their anomalous features
by means of Hubbard-like models, we need to exploit the
intermediate regime for the onsite coupling and the weak
regime for the intersite one. Only in this region of the
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-1.5

-1.0

-0.5

0.0

0 0.2 0.4 0.6 0.8 1

2D 
COM1
T=0.01 
U=4

V=1
V=0
V=-1

K

n

Fig. 20. The kinetic energy as a function of the particle density
for U = 4, T = 0.01 and various values of V .

model parameters, nc is in qualitative agreement with the
experimental data [66–71].

7 The specific heat

The specific heat is shown in Figure 24 for the one-
dimensional case and in Figure 25 for the two-dimensional
one.
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7.1 One-dimensional case

In 1D, the net effect of the intersite Coulomb repulsion is
to reduce the splitting between the charge and spin en-
ergy scales with respect to what observed for the simple
Hubbard model, with a resulting more pronounced single
peak at intermediate temperatures (see Fig. 24).
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Fig. 23. The critical value nc of the doping is shown as a
function of V for various values of U .
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7.2 Two-dimensional case

As regards the 2D case, it is worth noting that there is
a crossing point when the curves are plotted for differ-
ent values of the onsite Coulomb potential at fixed V (see
Fig. 25), but there is no crossing point when the onsite
Coulomb potential is fixed and different values of the in-
tersite Coulomb potential are considered. This can be seen
as an indication of the fact that the two interaction terms



A. Avella and F. Mancini: The Hubbard model with intersite interaction within the COM 161

act to different orders in a perturbation expansion for the
double occupancy and the kinetic energy. In particular,
there is no value of temperature for which the first deriva-
tive of the double occupancy and the kinetic energy with
respect to the intersite Coulomb potential does not depend
on the intersite Coulomb potential.

8 Conclusions

The extended Hubbard model, in one and two dimensions,
has been studied by means of the Composite Operator
Method within the 2-pole approximation. According to
the sign of the intersite Coulomb potential, transitions
between the paramagnetic (metal and insulator) phase to-
wards two kinds of charge ordered states (one-particle-per-
site and checkerboard types) have been found. The rank of
these transitions has been studied through the analysis of
double occupancy, nearest-neighbor density-density corre-
lator, kinetic and internal energies behavior. The evolution
of the Fermi surface and of the nesting filling has been
tracked on changing the value of the intersite potential
evidencing the range of parameters suitable to describe
the experimental features of the cuprate superconductors.
The specific heat features on varying the intensity of the
intersite potential has been contrasted to that found for
the simple Hubbard model.

Appendix A: Spectral density functions
and energy spectra

Within the 2-pole approximation, the energy spectra
Ei(k) and the spectral density functions σ(i)(k), appear-
ing in equation (2.5), are given by

E1(k) = R(k) +Q(k)

E2(k) = R(k) −Q(k) (A.1)

σ
(1)
11 (k) =

I11
2

[
1 +

g(k)
2Q(k)

]

σ
(2)
11 (k) =

I11
2

[
1 − g(k)

2Q(k)

]

σ
(1)
12 (k) =

m12(k)
2Q(k)

σ
(2)
12 (k) = −m12(k)

2Q(k)

σ
(1)
22 (k) =

I22
2

[
1 − g(k)

2Q(k)

]

σ
(2)
22 (k) =

I22
2

[
1 +

g(k)
2Q(k)

]
(A.2)

with the notation

R = R0 +R1α(k)

R0 = −µ+
U

2
+

d

I11I22

{
−t∆+

1
2
V

[
n2 + (1 − n)χα

c

]}

R1 =
d

I11I22
{−t [p+ I22(1 − n)] + V [I11Cα

22 + I22C
α
11]}
(A.3)

g(k) = g0 + g1α(k)

g0 = −U +
2d

I11I22

[
t(1 − n)∆+

1
2
V (n2 − χα

c )
]

g1 =
2d

I11I22
[t(1 − n)(p− I22) + V (I22Cα

11 − I11C
α
22)]

(A.4)

m12(k) = m0 +m1α(k)
m0 = 2dt∆

m1 = 2d [t(p− I22) + V Cα
12] (A.5)

Q(k) =
1
2

√

g2(k) +
4m2

12(k)
I11I22

. (A.6)

I11 = 1−n/2 and I22 = n/2 are the only non-zero entries
of the normalization matrix; the parameters appearing in
the previous equations are defined as

Cα
µν =

〈
ψα

µ (i)ψ†
ν(i)

〉

∆ = Cα
11 − Cα

22 (A.7)

χα
c = 〈n(i)nα(i)〉
p =

1
4
〈nα

µ(i)nµ(i)〉 −
〈
[c↑(i)c↓(i)]

α
c†↓(i)c

†
↑(i)

〉
. (A.8)

We can see that the Green’s function depends on the fol-
lowing set of parameters: µ, Cα

11, Cα
12, Cα

22, p, χα
c . They

can be computed as functions of the model parameters
and temperature and filling by the following set of cou-
pled self-consistent equations

n = 2[1 − C11 − C22]

Cα
µν = 〈ψα

µ(i)ψ†
ν(i)〉 (A.9)

C12 = 0

χα
c = n2 − n(2 − n)

n− 2D
I−1
11 (Cα

11 + Cα
12)

2

− n(2 − n)
n− 2D

I−1
22 (Cα

12 + Cα
22)

2 (A.10)

where Cµν = 〈ψµ(i)ψ†
ν(i)〉 and D = 1

N

∑
i〈n↑(i)n↓(i)〉 =

n
2 − C22 is the double occupancy.

The correlation function C(i, j) = 〈ψ(i)ψ†(j)〉 can be
computed in terms of the retarded propagator, or better
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in terms of the energy spectra and of the spectral density
functions, by means of the following expression [30]

C(i, j) =
Ω

2(2π)d

2∑

n=1

∫

ΩB

ddk ei[k·(i−j)−En(k)(ti−tj)]

× σ(n)(k)[1 + Tn(k)] (A.11)

where Ω and ΩB are the volume of the unit cells in
the direct and inverse spaces, respectively, and Tn(k) =
tanh (En(k)/2kBT ).
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